Neck of femur fracture

Changed by Calum Worsley, 11 Aug 2023
Disclosures - updated 12 Apr 2023: Nothing to disclose

Updates to Article Attributes

Body was changed:

Neck of femur (NOF) fractures, a.k.a.or femoral neck fractures, are common injuries sustained by older patients who are both more likely to have both unsteadiness of gait and reduced bone mineral density, predisposing to fracture. Elderly osteoporotic women are at greatest risk.

Epidemiology

The incidence of femoral neck fractures is increasing as the proportion of the elderly population in many countries increases 4. In patients aged between 65 and 99 years, femoral neck and intertrochanteric fractures occur with approximately the same frequency 7. Hip fractures can be divided into intracapsular and extracapsular fractures with 60% being intracapsular and of that 80% are displaced 20

Pathology

Classification

Femoral neck fractures are a subset of proximal femoral fractures. The femoral neck is the weakest part of the femur.

Since disruption of blood supply to the femoral head is dependent on the type of fracture and causes significant morbidity, the diagnosis and classification of these fractures is important. There are three types:

  • subcapital: femoral head/neck junction

  • transcervical: midportion of femoral neck

  • basicervical: base of femoral neck

Subcapital and transcervical fractures are considered intracapsular fractures. While there is disagreement in the literature as to whether basicervical fractures are truly intracapsular or extracapsular, they should usually be treated like extracapsular fractures 14.

Subcapital fractures are graded by the Garden classification of hip fractures.

Mechanism

Most commonly 9:

  • falls in the elderly

  • significant trauma (e.g. motor vehicle collisions) in younger patients

In elderly patients, the mechanism of injury varies from falls directly onto the hip to a twisting mechanism in which the patient’s foot is planted and the body rotates. There is generally deficient elastic resistance in the fractured bone 8.

The mechanism in young patients is predominantly axial loading during high force trauma 9, with an abducted hip during injury causing a neck of femur fracture and an adducted hip causing a hip fracture-dislocation.

Radiographic features

Plain radiograph (sensitivity 93-98%) is the first-line investigation for suspected NOF fractures. In patients with a suspected occult NOF fracture, MRI (sensitivity 99-100%) is recommended by many institutions as the second-line test if available within 24 hours, with CT or nuclear medicine bone scan third-line 17,18. There is some evidence that thin-slice MDCT is as sensitive as MRI 19.

Plain radiograph
  • Shenton’s line disruption: loss of contour between normally continuous line from medial edge of femoral neck and inferior edge of the superior pubic ramus

  • lesser trochanter is more prominent due to external rotation of femur

  • femur often positioned in flexion and external rotation (due to unopposed iliopsoas)

  • asymmetry of lateral femoral neck/head

  • sclerosis in fracture plane

  • smudgy sclerosis from impaction

  • bone trabeculae angulated

  • non-displaced fractures may be subtle on x-ray

Report checklist
  • AP pelvis and lateral hip should be viewed because pelvic fractures can mimic clinical features of hip fracture

  • trace Shenton’s line

  • assess for symmetry, particularly note lesser trochanter (may indicate external rotation)

  • bone trabeculae

  • sclerosis

  • smudge

Ultrasound

Point of care ultrasound may be utilised as an adjunct to radiography to facilitate timely diagnosis of femoral neck fractures and may be subsequently employed to deliver prompt relief of pain by delivery of a suitable nerve block (e.g. fascia iliaca compartment block).

Long and short axis views of the femoral neck with the overlying anterior synovial recess, femoral head and acetabulum and the greater and lesser trochanters are obtained with the following features consistent with a femoral neck fracture:

  • cortical discontinuity 22

    • breach in the normally smooth cortical surface

    • commonly associated with a hypoechoic fluid collection representing haematoma 21

  • joint effusion

    • representing haemarthrosis in the context of an intra-articular fracture

    • expansion of the anterior synovial recess with separation of the anterior and posterior synovial reflections by a collection of variable echogenicity

  • iliopsoas haematoma 23

Treatment and prognosis

Treatment of neck of femur fractures is important. Significant complications such as avascular necrosis and non-union are very common without surgical intervention. The treatment options include non-operative management, internal fixation or prosthetic replacement.

Internal fixation can be performed with multiple pins (cannulated screws), intramedullary hip screw (IHMS), crossed screw-nails or compression with a dynamic screw and plate 9. Replacing the femoral head is achieved with either hemiarthroplasty or total hip arthroplasty

In patients receiving hemiarthroplasty, evidence shows that cemented hemiarthroplasty has fewer prosthesis-related complications than uncemented prostheses, despite similar rates of mortality 20

The high morbidity and mortality associated with hip and pelvic fractures after trauma has been well documented. Prognosis is varied but is complicated by advanced age, as hip fractures increase the risk of death and major morbidity in the elderly 5,6,8.

The risk of osteonecrosis depends on the type of fracture. The Delbet classification, originally described by Delbet in adults but more frequently used with reference to paediatric fractures, correlates with the risk of osteonecrosis 12,13:

  • type 1 (transphyseal): ~90% risk of osteonecrosis

  • type 2 (subcapital(transcervical): ~50% risk of osteonecrosis

  • type 3 (basicervical/transcervical): ~25% risk of osteonecrosis

  • type 4 (intertrochanteric): ~10% risk of osteonecrosis

As a general rule, internal fixation is recommended for young, otherwise, fit patients with a small risk for osteonecrosis. While prosthetic replacement is reserved for fractures with a high risk of osteonecrosis and the elderly 10.

See also

  • -<p><strong>Neck of femur (NOF) fractures</strong>, a.k.a. <strong>femoral neck fractures</strong>, are common injuries sustained by older patients who are both more likely to have unsteadiness of gait and reduced bone mineral density, predisposing to fracture. Elderly <a href="/articles/osteoporosis">osteoporotic</a> women are at greatest risk.</p><h4>Epidemiology</h4><p>The incidence of femoral neck fractures is increasing as the proportion of the elderly population in many countries increases <sup>4</sup>. In patients aged between 65 and 99 years, femoral neck and intertrochanteric fractures occur with approximately the same frequency <sup>7</sup>. Hip fractures can be divided into intracapsular and extracapsular fractures with 60% being intracapsular and of that 80% are displaced <sup>20</sup>. </p><h4>Pathology</h4><h5>Classification</h5><p>Femoral neck fractures are a subset of <a href="/articles/proximal-femoral-fractures">proximal femoral fractures</a>. The <a href="/articles/femoral-neck">femoral neck</a> is the weakest part of the <a href="/articles/femur">femur</a>.</p><p>Since disruption of blood supply to the <a href="/articles/femoral-head">femoral head</a> is dependent on the type of fracture and causes significant morbidity, the diagnosis and classification of these fractures is important. There are three types:</p><ul>
  • +<p><strong>Neck of femur (NOF) fractures</strong>, or <strong>femoral neck fractures</strong>, are common injuries sustained by older patients who are more likely to have both unsteadiness of gait and reduced bone mineral density, predisposing to fracture. Elderly <a href="/articles/osteoporosis">osteoporotic</a> women are at greatest risk.</p><h4>Epidemiology</h4><p>The incidence of femoral neck fractures is increasing as the proportion of the elderly population in many countries increases <sup>4</sup>. In patients aged between 65 and 99 years, femoral neck and intertrochanteric fractures occur with approximately the same frequency <sup>7</sup>. Hip fractures can be divided into intracapsular and extracapsular fractures with 60% being intracapsular and of that 80% are displaced <sup>20</sup>. </p><h4>Pathology</h4><h5>Classification</h5><p>Femoral neck fractures are a subset of <a href="/articles/proximal-femoral-fractures">proximal femoral fractures</a>. The <a href="/articles/femoral-neck">femoral neck</a> is the weakest part of the <a href="/articles/femur">femur</a>.</p><p>Since disruption of blood supply to the <a href="/articles/femoral-head">femoral head</a> is dependent on the type of fracture and causes significant morbidity, the diagnosis and classification of these fractures is important. There are three types:</p><ul>
  • -</ul><h5>Ultrasound</h5><p><a href="/articles/point-of-care-ultrasound-curriculum" title="Point-of-care ultrasound (curriculum)">Point of care ultrasound</a> may be utilised as an adjunct to radiography to facilitate timely diagnosis of femoral neck fractures and may be subsequently employed to deliver prompt relief of pain by delivery of a suitable nerve block (e.g. <a href="/articles/fascia-iliaca-compartment-block-ultrasound" title="Fascia iliaca compartment block (ultrasound)">fascia iliaca compartment block</a>). </p><p>Long and short axis views of the femoral neck with the overlying anterior synovial recess, femoral head and acetabulum and the greater and lesser trochanters are obtained with the following features consistent with a femoral neck fracture:</p><ul>
  • +</ul><h5>Ultrasound</h5><p><a href="/articles/point-of-care-ultrasound-curriculum" title="Point-of-care ultrasound (curriculum)">Point of care ultrasound</a> may be utilised as an adjunct to radiography to facilitate timely diagnosis of femoral neck fractures and may be subsequently employed to deliver prompt relief of pain by delivery of a suitable nerve block (e.g. <a href="/articles/fascia-iliaca-compartment-block-ultrasound" title="Fascia iliaca compartment block (ultrasound)">fascia iliaca compartment block</a>).</p><p>Long and short axis views of the femoral neck with the overlying anterior synovial recess, femoral head and acetabulum and the greater and lesser trochanters are obtained with the following features consistent with a femoral neck fracture:</p><ul>
  • -</ul><h4>Treatment and prognosis</h4><p>Treatment of neck of femur fractures is important. Significant complications such as avascular necrosis and non-union are very common without surgical intervention. The treatment options include non-operative management, internal fixation or prosthetic replacement.</p><p>Internal fixation can be performed with multiple pins (cannulated screws), <a href="/articles/intramedullary-hip-screw">intramedullary hip screw (IHMS)</a>, crossed screw-nails or compression with a <a href="/articles/dynamic-hip-screw">dynamic screw and plate</a> <sup>9</sup>. Replacing the femoral head is achieved with either <a href="/articles/hip-hemiarthroplasty">hemiarthroplasty</a> or <a href="/articles/total-hip-arthroplasty">total hip arthroplasty</a>. </p><p>In patients receiving hemiarthroplasty, evidence shows that cemented hemiarthroplasty has fewer prosthesis-related complications than uncemented prostheses, despite similar rates of mortality <sup>20</sup>. </p><p>The high morbidity and mortality associated with hip and pelvic fractures after trauma has been well documented. Prognosis is varied but is complicated by advanced age, as hip fractures increase the risk of death and major morbidity in the elderly <sup>5,6,8</sup>.</p><p>The risk of <a href="/articles/osteonecrosis-of-the-femoral-head" title="Osteonecrosis of the femoral head">osteonecrosis</a> depends on the type of fracture. The <a href="/articles/delbet-classification-1">Delbet classification</a> correlates with the risk of osteonecrosis <sup>12,13</sup>:</p><ul>
  • +</ul><h4>Treatment and prognosis</h4><p>Treatment of neck of femur fractures is important. Significant complications such as avascular necrosis and non-union are very common without surgical intervention. The treatment options include non-operative management, internal fixation or prosthetic replacement.</p><p>Internal fixation can be performed with multiple pins (cannulated screws), <a href="/articles/intramedullary-hip-screw">intramedullary hip screw (IHMS)</a>, crossed screw-nails or compression with a <a href="/articles/dynamic-hip-screw">dynamic screw and plate</a> <sup>9</sup>. Replacing the femoral head is achieved with either <a href="/articles/hip-hemiarthroplasty">hemiarthroplasty</a> or <a href="/articles/total-hip-arthroplasty">total hip arthroplasty</a>. </p><p>In patients receiving hemiarthroplasty, evidence shows that cemented hemiarthroplasty has fewer prosthesis-related complications than uncemented prostheses, despite similar rates of mortality <sup>20</sup>. </p><p>The high morbidity and mortality associated with hip and pelvic fractures after trauma has been well documented. Prognosis is varied but is complicated by advanced age, as hip fractures increase the risk of death and major morbidity in the elderly <sup>5,6,8</sup>.</p><p>The risk of <a href="/articles/osteonecrosis-of-the-femoral-head" title="Osteonecrosis of the femoral head">osteonecrosis</a> depends on the type of fracture. The <a href="/articles/delbet-classification-1">Delbet classification</a>, originally described by Delbet in adults but more frequently used with reference to paediatric fractures, correlates with the risk of osteonecrosis <sup>12,13</sup>:</p><ul>
  • -<li><p>type 2 (subcapital): ~50% risk of osteonecrosis</p></li>
  • -<li><p>type 3 (basicervical/transcervical): ~25% risk of osteonecrosis</p></li>
  • +<li><p>type 2 (transcervical): ~50% risk of osteonecrosis</p></li>
  • +<li><p>type 3 (basicervical): ~25% risk of osteonecrosis</p></li>

References changed:

  • 1. Ralph Weissleder. Primer of Diagnostic Imaging. (2007) ISBN: 9780323040686 - <a href="http://books.google.com/books?vid=ISBN9780323040686">Google Books</a>
  • 2. Oka M & Monu J. Prevalence and Patterns of Occult Hip Fractures and Mimics Revealed by MRI. AJR Am J Roentgenol. 2004;182(2):283-8. <a href="https://doi.org/10.2214/ajr.182.2.1820283">doi:10.2214/ajr.182.2.1820283</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/14736647">Pubmed</a>
  • 3. Kirby M & Spritzer C. Radiographic Detection of Hip and Pelvic Fractures in the Emergency Department. AJR Am J Roentgenol. 2010;194(4):1054-60. <a href="https://doi.org/10.2214/AJR.09.3295">doi:10.2214/AJR.09.3295</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/20308510">Pubmed</a>
  • 4. Kannus P, Parkkari J, Sievänen H, Heinonen A, Vuori I, Järvinen M. Epidemiology of Hip Fractures. Bone. 1996;18(1 Suppl):57S-63S. <a href="https://doi.org/10.1016/8756-3282(95)00381-9">doi:10.1016/8756-3282(95)00381-9</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/8717549">Pubmed</a>
  • 5. Wolinsky F, Fitzgerald J, Stump T. The Effect of Hip Fracture on Mortality, Hospitalization, and Functional Status: A Prospective Study. Am J Public Health. 1997;87(3):398-403. <a href="https://doi.org/10.2105/ajph.87.3.398">doi:10.2105/ajph.87.3.398</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/9096540">Pubmed</a>
  • 6. Bentler S, Liu L, Obrizan M et al. The Aftermath of Hip Fracture: Discharge Placement, Functional Status Change, and Mortality. Am J Epidemiol. 2009;170(10):1290-9. <a href="https://doi.org/10.1093/aje/kwp266">doi:10.1093/aje/kwp266</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/19808632">Pubmed</a>
  • 7. Karagas M, Lu-Yao G, Barrett J, Beach M, Baron J. Heterogeneity of Hip Fracture: Age, Race, Sex, and Geographic Patterns of Femoral Neck and Trochanteric Fractures Among the US Elderly. Am J Epidemiol. 1996;143(7):677-82. <a href="https://doi.org/10.1093/oxfordjournals.aje.a008800">doi:10.1093/oxfordjournals.aje.a008800</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/8651229">Pubmed</a>
  • 8. Schwappach J, Murphey M, Kokmeyer S, Rosenthal H, Simmons M, Huntrakoon M. Subcapital Fractures of the Femoral Neck: Prevalence and Cause of Radiographic Appearance Simulating Pathologic Fracture. AJR Am J Roentgenol. 1994;162(3):651-4. <a href="https://doi.org/10.2214/ajr.162.3.8109516">doi:10.2214/ajr.162.3.8109516</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/8109516">Pubmed</a>
  • 9. Sachse D, Beiter C, Bludau F, Obertacke U, Schreiner U. [Fractures of the Neck of the Femur in Younger Patients (15-50 Years Old). Outcome 4 Years After Surgery]. Z Orthop Unfall. 2014;152(1):20-5. <a href="https://doi.org/10.1055/s-0033-1360243">doi:10.1055/s-0033-1360243</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/24578109">Pubmed</a>
  • 10. Schultz E, Miller T, Boruchov S, Schmell E, Toledano B. Incomplete Intertrochanteric Fractures: Imaging Features and Clinical Management. Radiology. 1999;211(1):237-40. <a href="https://doi.org/10.1148/radiology.211.1.r99mr24237">doi:10.1148/radiology.211.1.r99mr24237</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/10189478">Pubmed</a>
  • 11. Kirby M & Spritzer C. Radiographic Detection of Hip and Pelvic Fractures in the Emergency Department. AJR Am J Roentgenol. 2010;194(4):1054-60. <a href="https://doi.org/10.2214/AJR.09.3295">doi:10.2214/AJR.09.3295</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/20308510">Pubmed</a>
  • 13. Mark D. Miller, Stephen R. Thompson, Jennifer Hart. Review of Orthopaedics. (2012) ISBN: 9781437720242 - <a href="http://books.google.com/books?vid=ISBN9781437720242">Google Books</a>
  • 14. Khurana B, Mandell J, Rocha T et al. Internal Rotation Traction Radiograph Improves Proximal Femoral Fracture Classification Accuracy and Agreement. AJR Am J Roentgenol. 2018;211(2):409-15. <a href="https://doi.org/10.2214/AJR.17.19258">doi:10.2214/AJR.17.19258</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/29894220">Pubmed</a>
  • 17. Yun B, Myriam Hunink M, Prabhakar A et al. Diagnostic Imaging Strategies for Occult Hip Fractures: A Decision and Cost-Effectiveness Analysis. Acad Emerg Med. 2016;23(10):1161-9. <a href="https://doi.org/10.1111/acem.13026">doi:10.1111/acem.13026</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/27286291">Pubmed</a>
  • 19. Thomas R, Williams H, Carpenter E, Lyons K. The Validity of Investigating Occult Hip Fractures Using Multidetector CT. Br J Radiol. 2016;89(1060):20150250. <a href="https://doi.org/10.1259/bjr.20150250">doi:10.1259/bjr.20150250</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/26838948">Pubmed</a>
  • 20. Robertson G & Wood A. Hip Hemi-Arthroplasty for Neck of Femur Fracture: What is the Current Evidence? World J Orthop. 2018;9(11):235-44. <a href="https://doi.org/10.5312/wjo.v9.i11.235">doi:10.5312/wjo.v9.i11.235</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/30479970">Pubmed</a>
  • 22. Qadi H, Davidson J, Trauer M, Beese R. Ultrasound of Bone Fractures. Ultrasound. 2020;28(2):118-23. <a href="https://doi.org/10.1177/1742271X20901824">doi:10.1177/1742271X20901824</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/32528547">Pubmed</a>
  • 1. Weissleder R, Wittenberg J, Harisinghani MG. Primer of diagnostic imaging. Mosby Inc. (2007) ISBN:0323040683. <a href="http://books.google.com/books?vid=ISBN0323040683">Read it at Google Books</a> - <a href="http://www.amazon.com/gp/product/0323040683?ie=UTF8&tag=radiopaediaor-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0323040683">Find it at Amazon</a><div class="ref_v2"></div>
  • 2. Oka M, Monu JU. Prevalence and patterns of occult hip fractures and mimics revealed by MRI. AJR Am J Roentgenol. 2004;182 (2): 283-8. <a href="http://www.ajronline.org/cgi/content/full/182/2/283">AJR Am J Roentgenol (full text)</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/14736647">Pubmed citation</a><div class="ref_v2"></div>
  • 3. Kirby MW, Spritzer C. Radiographic detection of hip and pelvic fractures in the emergency department. AJR Am J Roentgenol. 2010;194 (4): 1054-60. <a href="http://dx.doi.org/10.2214/AJR.09.3295">doi:10.2214/AJR.09.3295</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/20308510">Pubmed citation</a><div class="ref_v2"></div>
  • 4. Kannus P, Parkkari J, Sievänen H et-al. Epidemiology of hip fractures. Bone. 1996;18 (1 Suppl): 57S-63S. <a href="http://www.ncbi.nlm.nih.gov/pubmed/8717549">Pubmed citation</a><span class="auto"></span>
  • 5. Wolinsky FD, Fitzgerald JF, Stump TE. The effect of hip fracture on mortality, hospitalization, and functional status: a prospective study. Am J Public Health. 1997;87 (3): 398-403. <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1381011">Free text at pubmed</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/9096540">Pubmed citation</a><span class="auto"></span>
  • 6. Bentler SE, Liu L, Obrizan M et-al. The aftermath of hip fracture: discharge placement, functional status change, and mortality. Am. J. Epidemiol. 2009;170 (10): 1290-9. <a href="http://dx.doi.org/10.1093/aje/kwp266">doi:10.1093/aje/kwp266</a> - <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781759">Free text at pubmed</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/19808632">Pubmed citation</a><span class="auto"></span>
  • 7. Karagas MR, Lu-Yao GL, Barrett JA et-al. Heterogeneity of hip fracture: age, race, sex, and geographic patterns of femoral neck and trochanteric fractures among the US elderly. Am. J. Epidemiol. 1996;143 (7): 677-82. <a href="http://www.ncbi.nlm.nih.gov/pubmed/8651229">Pubmed citation</a><span class="auto"></span>
  • 8. Schwappach JR, Murphey MD, Kokmeyer SF et-al. Subcapital fractures of the femoral neck: prevalence and cause of radiographic appearance simulating pathologic fracture. AJR Am J Roentgenol. 1994;162 (3): 651-4. <a href="http://dx.doi.org/10.2214/ajr.162.3.8109516">doi:10.2214/ajr.162.3.8109516</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/8109516">Pubmed citation</a><span class="auto"></span>
  • 9. Sachse D, Beiter C, Bludau F et-al. Fractures of the neck of the femur in younger patients (15-50 years old). Outcome 4 years after surgery. Z Orthop Unfall. 2014;152 (01): 20-5. <a href="http://dx.doi.org/10.1055/s-0033-1360243">doi:10.1055/s-0033-1360243</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/24578109">Pubmed citation</a><span class="auto"></span>
  • 10. Schultz E, Miller TT, Boruchov SD et-al. Incomplete intertrochanteric fractures: imaging features and clinical management. Radiology. 1999;211 (1): 237-40. <a href="http://dx.doi.org/10.1148/radiology.211.1.r99mr24237">doi:10.1148/radiology.211.1.r99mr24237</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/10189478">Pubmed citation</a><span class="auto"></span>
  • 11. Kirby MW, Spritzer C. Radiographic detection of hip and pelvic fractures in the emergency department. AJR Am J Roentgenol. 2010;194 (4): 1054-60. <a href="http://dx.doi.org/10.2214/AJR.09.3295">doi:10.2214/AJR.09.3295</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/20308510">Pubmed citation</a><span class="auto"></span>
  • 13. Miller MD, Thompson SR, ATC JHP. Review of Orthopaedics: Expert Consult - Online and Print, 6e. Saunders. ISBN:1437720242. <a href="http://books.google.com/books?vid=ISBN1437720242">Read it at Google Books</a> - <a href="http://www.amazon.com/gp/product/1437720242">Find it at Amazon</a><span class="auto"></span>
  • 14. Khurana B, Mandell JC, Rocha TC, Duran-Mendicuti MA, Jimale H, Rosner B, Harris MB, Sodickson AD, Weaver MJ. Internal Rotation Traction Radiograph Improves Proximal Femoral Fracture Classification Accuracy and Agreement. (2018) AJR. American journal of roentgenology. 211 (2): 409-415. <a href="https://doi.org/10.2214/AJR.17.19258">doi:10.2214/AJR.17.19258</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/29894220">Pubmed</a> <span class="ref_v4"></span>
  • 17. Brian J. Yun, M. G. Myriam Hunink, Anand M. Prabhakar, Marilyn Heng, Shan W. Liu, Rameez Qudsi, Ali S. Raja. Diagnostic Imaging Strategies for Occult Hip Fractures: A Decision and Cost–Effectiveness Analysis. (2016) Academic Emergency Medicine. 23 (10): 1161. <a href="https://doi.org/10.1111/acem.13026">doi:10.1111/acem.13026</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/27286291">Pubmed</a> <span class="ref_v4"></span>
  • 19. Rhys W Thomas, Huw L M Williams, Eleanor C Carpenter, Kathleen Lyons. The validity of investigating occult hip fractures using multidetector CT. (2016) The British Journal of Radiology. 89 (1060): 20150250. <a href="https://doi.org/10.1259/bjr.20150250">doi:10.1259/bjr.20150250</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/26838948">Pubmed</a> <span class="ref_v4"></span>
  • 20. Robertson G & Wood A. Hip Hemi-Arthroplasty for Neck of Femur Fracture: What is the Current Evidence? WJO. 2018;9(11):235-44. <a href="https://doi.org/10.5312/wjo.v9.i11.235">doi:10.5312/wjo.v9.i11.235</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/30479970">Pubmed</a>
  • 22. Qadi H, Davidson J, Trauer M, Beese R. Ultrasound of Bone Fractures. Ultrasound. 2020;28(2):118-23. <a href="https://doi.org/10.1177/1742271x20901824">doi:10.1177/1742271x20901824</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/32528547">Pubmed</a>

ADVERTISEMENT: Supporters see fewer/no ads

Updating… Please wait.

 Unable to process the form. Check for errors and try again.

 Thank you for updating your details.