Vertebral artery dissection

Changed by Francis Deng, 23 Nov 2021

Updates to Article Attributes

Body was changed:

Vertebral artery dissection, like arterial dissection elsewhere, is a result of blood entering the media through a tear in the intima of the vertebral artery. It is potentially lethal and can be difficult to diagnose clinically and radiologically.

Epidemiology

Vertebral artery dissections have an incidence of 1-5 per 100,000 10,11. They are typically encountered in a somewhat younger cohort than internal carotid artery dissections 15

The link between chiropractic neck manipulation and cervical artery dissection (both the carotid artery and vertebral artery) has been long suspected and has been the source of much litigation and heated debates. Although as yet there is no conclusive evidence of a direct causal link between the two 16, an increased association between patients who present with cervical dissections and preceding neck manipulations has been established 18 which has led some medical associations to suggest a cautionary link 17 based on plausibility and limited established benefits of neck manipulation 19. Chiropractors have dismissed this association, perhaps correctly, on the grounds that dissection causes neck pain and results in patients seeking out chiropractic manipulation ref135

Clinical presentation

Patients present with a variety of signs and symptoms, most frequently with neck pain and headache (typically occipital) as well as posterior fossa ischaemic events (e.g. TIA or stroke) manifesting as nausea, ataxia, dysarthria, lateral medullary syndrome, or even collapse and coma 11,15,13. Intradural extension is quite common, with a high frequency of subarachnoid haemorrhage (SAH) 1513. Other presentations include spinal cord infarction and even cervical nerve root impairment) 1.

Pathology

As with other arterial dissections, blood enters the wall of the artery through a tear in the intima and dissects along the intima-media plane. As the blood expands the wall, it compromises the lumen resulting in stenosis or occlusion.

In intracranial dissection, there is a high risk of subarachnoid haemorrhage (up to 50% for vertebrobasilar dissections 3) on account of the anatomy of intracranial arteries. The vertebral arteries, like the ICA, have a differing distribution of elastic fibres compared to similar-sized vessels elsewhere (this has been disputed by FT Merei 14).  Although the tunica media and tunica adventitiaare present, they are only a third as thick as their extracranial counterparts, with the vast majority of elastic fibres located in a subendothelial elastic lamina. This fundamental difference accounts for the markedly different natural history of intracranial arterial dissections compared to their extracranial counterparts. When a tear breaches the aforementioned subendothelial elastic layer, then there is little tissue preventing extension into the subarachnoid space, thus accounting for the very high rate of subarachnoid haemorrhage.

Aetiology

The link between chiropractic neck manipulation and cervical artery dissection (both the carotid artery and vertebral artery) has been long suspected and has been the source of much litigation and heated debates. Although as yet there is no conclusive evidence of a direct causal link between the two, an increased association between patients who present with cervical dissections and preceding neck manipulations has been established, which has led some medical associations to suggest a cautionary link based on plausibility and limited established benefits of neck manipulation 14-17. Chiropractors have dismissed this association on the grounds that dissection causes neck pain and results in patients seeking out chiropractic manipulation ref.

Radiographic features

Dissections are mostly located in the pars transversaria segment (V2) ~35% or in the atlas loop segment (V3) ~34% 2-3,3,11. It is important to note that, in addition to the identification of the dissections, the next most important feature is to assess whether or not the dissection involves the intradural portion of the vertebral artery (V4), and thus the origin of the PICA 3.

Vertebral artery dissections can be divided into two groups:

  1. extracranial dissection(with or without intracranial extension)
  2. intracranial dissection

CTA, MRI, and catheter angiography can all be used to detect vertebral artery dissection, and each has pros and cons. Unfortunately, the vertebral arteries cannot always be satisfactorily imaged using ultrasound, and the diagnosis relies more on indirect Doppler hemodynamic signs than on direct identification of the dissection 10.

CT

CT and CT angiography (CTA) are often the first investigations obtained. Other than demonstrating posterior fossa ischaemia or subarachnoid haemorrhage, CT may identify an occluded vertebral (hyperdense) or mural thrombus (thickened wall, often with some surrounding stranding). CT may sometimes show a characteristic "double lumen" appearance 5.

CTA additionally can, especially with coronal and sagittal reformats, demonstrate irregularity of the lumen, as well as make thickening of the arterial wall more easily appreciable.

MRI

In addition to far greater sensitivity to small foci of ischaemia (using DWI), and the ability to image the vessel lumen (MRA), MRI is also more sensitive at imaging intramural haemorrhage.

Fat saturatedsuppressed T1 axial images (without contrast) through the neck are beststandard for detecting cervical arterial intramural hematoma, demonstrating a sickle-shapedcrescent sign of hyperintensity in the wall of the affected vessel. Flow-suppressed T1-weighted MPRAGE) sequence has been suggested as a more reliable alternative 12.

Angiography (DSA)

Conventional angiography is traditionally considered the gold standard. It may demonstrate focal dilatation, proximal or distal stenosis, or fusiform aneurysmal dilatation 9.

Treatment and prognosis

Both treatment and prognosis are strongly affected by whether or not the dissection extends into the intracranial compartment. If the latter is true, then there is a high rate of subarachnoid haemorrhage, usually with a disastrous outcome.

Factors predicting outcome include:

Treatment is also largely influenced by the location of the dissection. In dissections limited to the extracranial vertebral artery then antiplatelet agents are the mainstay of treatment, aimed at preventing artery-to-artery embolisation and posterior circulation infarcts 3

Patients with intracranial extension are not treated with anticoagulation or antiplatelet agents on account of the risk of subarachnoid haemorrhage 3. Provided there is adequate collateral flow (i.e. large contralateral vertebral artery, intact circle of Willis), and especially in cases of subarachnoid haemorrhage, consideration should be given to operative or endovascular trapping or coiling of the dissected artery 4. Depending on the arterial anatomy, the risk or resulting posterior fossa ischaemia is variable.

Complications

Recognised complications include:

  • arterial thrombosis and occlusion
  • dissection-induced stenosis 8,10
    • dissection promotes compression over the true lumen of the artery
  • pseudoaneurysm formation 8,10
    • dissection extends toward the adventitia forming a pseudoaneurysm
  • thromboembolic infarcts 10
    • a dissecting aneurysm may become a nidus for distal thromboembolism

Differential diagnosis

It mayExtensive, regular luminal narrowing can be difficultdue to differentiate between a developmental vertebral artery dissection and a hypoplastic vertebral arteryhypoplasia in a trauma setting.

T1 hyperintensity around the V3 segment on spin-echo-based images can be due to the perivascular venous plexus rather than intramural hematoma 12.

  • -<p><strong>Vertebral artery dissection</strong>, like <a href="/articles/arterial-dissection">arterial dissection</a> elsewhere, is a result of blood entering the <a href="/articles/media">media</a> through a tear in the <a href="/articles/intima">intima</a> of the <a href="/articles/vertebral-artery">vertebral artery</a>. It is potentially lethal and can be difficult to diagnose clinically and radiologically.</p><h4>Epidemiology</h4><p>Vertebral artery dissections have an incidence of 1-5 per 100,000 <sup>10,11</sup>. They are typically encountered in a somewhat younger cohort than <a href="/articles/internal-carotid-artery-dissection-1">internal carotid artery dissections</a> <sup>15</sup>. </p><p>The link between chiropractic neck manipulation and cervical artery dissection (both the carotid artery and vertebral artery) has been long suspected and has been the source of much litigation and heated debates. Although as yet there is no conclusive evidence of a direct causal link between the two <sup>16</sup>, an increased association between patients who present with cervical dissections and preceding neck manipulations has been established <sup>18 </sup>which has led some medical associations to suggest a cautionary link <sup>17</sup> based on plausibility and limited established benefits of neck manipulation <sup>19</sup>. Chiropractors have dismissed this association, perhaps correctly, on the grounds that dissection causes neck pain and results in patients seeking out chiropractic manipulation <sup>ref</sup>. </p><h4>Clinical presentation</h4><p>Patients present with a variety of signs and symptoms, most frequently with neck pain and headache (typically occipital) as well as posterior fossa ischaemic events (e.g. <a href="/articles/transient-ischaemic-attack">TIA</a> or <a href="/articles/stroke">stroke</a>) manifesting as nausea, ataxia, dysarthria, <a href="/articles/lateral-medullary-syndrome">lateral medullary syndrome</a> or even collapse and coma <sup>11,15</sup>. Intradural extension is quite common, with a high frequency of <a href="/articles/subarachnoid-haemorrhage-sah">subarachnoid haemorrhage (SAH)</a> <sup>15</sup>. Other presentations include spinal cord infarction and even cervical nerve root impairment) <sup>1</sup>.</p><h4>Pathology</h4><p>As with other <a href="/articles/arterial-dissection">arterial dissections</a>, blood enters the wall of the artery through a tear in the intima and dissects along the intima-media plane. As the blood expands the wall, it compromises the lumen resulting in stenosis or occlusion.</p><p>In <a href="/articles/intracranial-dissection">intracranial dissection</a>, there is a high risk of <a href="/articles/subarachnoid-haemorrhage">subarachnoid haemorrhage</a> (up to 50% for <a href="/articles/vertebrobasilar-dissection">vertebrobasilar dissections</a> <sup>3</sup>) on account of the <a href="/articles/intracranial-arteries">anatomy of intracranial arteries</a>. The vertebral arteries, like the ICA, have a differing distribution of elastic fibres compared to similar-sized vessels elsewhere (this has been disputed by FT Merei <sup>14</sup>).  Although the <em>tunica media </em>and <em>tunica adventitia </em>are present they are only a third as thick as their extracranial counterparts, with the vast majority of elastic fibres located in a subendothelial elastic lamina. This fundamental difference accounts for the markedly different natural history of <a href="/articles/intracranial-arterial-dissections">intracranial arterial dissections</a> compared to their <a href="/articles/arterial-dissection">extracranial counterparts</a>. When a tear breaches the aforementioned subendothelial elastic layer, then there is little tissue preventing extension into the subarachnoid space, thus accounting for the very high rate of <a href="/articles/subarachnoid-haemorrhage">subarachnoid haemorrhage</a>.</p><h5>Aetiology</h5><ul>
  • +<p><strong>Vertebral artery dissection</strong>, like <a href="/articles/arterial-dissection">arterial dissection</a> elsewhere, is a result of blood entering the <a href="/articles/media">media</a> through a tear in the <a href="/articles/intima">intima</a> of the <a href="/articles/vertebral-artery">vertebral artery</a>. It is potentially lethal and can be difficult to diagnose clinically and radiologically.</p><h4>Epidemiology</h4><p>Vertebral artery dissections have an incidence of 1-5 per 100,000 <sup>10,11</sup>. They are typically encountered in a somewhat younger cohort than <a href="/articles/internal-carotid-artery-dissection-1">internal carotid artery dissections</a> <sup>135</sup>. </p><h4>Clinical presentation</h4><p>Patients present with a variety of signs and symptoms, most frequently with neck pain and headache (typically occipital) as well as posterior fossa ischaemic events (e.g. <a href="/articles/transient-ischaemic-attack">TIA</a> or <a href="/articles/stroke">stroke</a>) manifesting as nausea, ataxia, dysarthria, <a href="/articles/lateral-medullary-syndrome">lateral medullary syndrome</a>, or even collapse and coma <sup>11,13</sup>. Intradural extension is quite common, with a high frequency of <a href="/articles/subarachnoid-haemorrhage-sah">subarachnoid haemorrhage (SAH)</a> <sup>13</sup>. Other presentations include spinal cord infarction and even cervical nerve root impairment <sup>1</sup>.</p><h4>Pathology</h4><p>As with other <a href="/articles/arterial-dissection">arterial dissections</a>, blood enters the wall of the artery through a tear in the intima and dissects along the intima-media plane. As the blood expands the wall, it compromises the lumen resulting in stenosis or occlusion.</p><p>In <a href="/articles/intracranial-dissection">intracranial dissection</a>, there is a high risk of <a href="/articles/subarachnoid-haemorrhage">subarachnoid haemorrhage</a> (up to 50% for <a href="/articles/vertebrobasilar-dissection">vertebrobasilar dissections</a> <sup>3</sup>) on account of the <a href="/articles/intracranial-arteries">anatomy of intracranial arteries</a>. Although the tunica media and tunica adventitia<em> </em>are present, they are only a third as thick as their extracranial counterparts, with the vast majority of elastic fibres located in a subendothelial elastic lamina. This fundamental difference accounts for the markedly different natural history of <a href="/articles/intracranial-arterial-dissections">intracranial arterial dissections</a> compared to their <a href="/articles/arterial-dissection">extracranial counterparts</a>. When a tear breaches the aforementioned subendothelial elastic layer, then there is little tissue preventing extension into the subarachnoid space, thus accounting for the very high rate of <a href="/articles/subarachnoid-haemorrhage">subarachnoid haemorrhage</a>.</p><h5>Aetiology</h5><ul>
  • -</ul><h4>Radiographic features</h4><p>Dissections are mostly located in the pars transversaria segment (V2) ~35% or in the atlas loop segment (V3) ~34% <sup>2-3,11</sup>. It is important to note that, in addition to the identification of the dissections, the next most important feature is to assess whether or not the dissection involves the intradural portion of the <a href="/articles/vertebral-artery">vertebral artery</a> (V4), and thus the origin of the <a href="/articles/posterior-inferior-cerebellar-artery">PICA</a> <sup>3</sup>.</p><p>Vertebral artery dissections can be divided into two groups:</p><ol>
  • +</ul><p>The link between chiropractic neck manipulation and cervical artery dissection (both the carotid artery and vertebral artery) has been long suspected and has been the source of much litigation and heated debates. Although as yet there is no conclusive evidence of a direct causal link between the two, an increased association between patients who present with cervical dissections and preceding neck manipulations has been established, which has led some medical associations to suggest a cautionary link based on plausibility and limited established benefits of neck manipulation <sup>14-17</sup>. Chiropractors have dismissed this association on the grounds that dissection causes neck pain and results in patients seeking out chiropractic manipulation <sup>ref</sup>.</p><h4>Radiographic features</h4><p>Dissections are mostly located in the pars transversaria segment (V2) ~35% or in the atlas loop segment (V3) ~34% <sup>2,3,11</sup>. It is important to note that, in addition to the identification of the dissections, the next most important feature is to assess whether or not the dissection involves the intradural portion of the <a href="/articles/vertebral-artery">vertebral artery</a> (V4), and thus the origin of the <a href="/articles/posterior-inferior-cerebellar-artery">PICA</a> <sup>3</sup>.</p><p>Vertebral artery dissections can be divided into two groups:</p><ol>
  • -</ol><p>CTA, MRI and catheter angiography can all be used to detect vertebral artery dissection, and each has pros and cons. Unfortunately, the vertebral arteries cannot always be satisfactorily imaged using ultrasound, and the diagnosis relies more on indirect Doppler hemodynamic signs than on direct identification of the dissection <sup>10</sup>.</p><h5>CT</h5><p>CT and CT angiography (CTA) are often the first investigations obtained. Other than demonstrating posterior fossa ischaemia or subarachnoid haemorrhage, CT may identify an occluded vertebral (hyperdense) or mural thrombus (thickened wall, often with some surrounding stranding). CT may sometimes show a characteristic "double lumen" appearance <sup>5</sup>.</p><p>CTA additionally can, especially with coronal and sagittal reformats, demonstrate irregularity of the lumen, as well as make thickening of the arterial wall more easily appreciable.</p><h5>MRI</h5><p>In addition to far greater sensitivity to small foci of ischaemia (using <a href="/articles/diffusion-weighted-imaging-2">DWI</a>), and the ability to image the vessel lumen (MRA), MRI is also more sensitive at imaging intramural haemorrhage.</p><p>Fat saturated T1 axial images through the neck are best, demonstrating a sickle-shaped hyperintensity in the wall of the affected vessel (<a href="/articles/crescent-sign-of-arterial-dissection">crescent sign</a>).</p><h5>Angiography (DSA)</h5><p>Conventional angiography is traditionally considered the gold standard. It may demonstrate focal dilatation, proximal or distal stenosis, or fusiform aneurysmal dilatation <sup>9</sup>.</p><h4>Treatment and prognosis</h4><p>Both treatment and prognosis are strongly affected by whether or not the dissection extends into the intracranial compartment. If the latter is true, then there is a high rate of subarachnoid haemorrhage, usually with a disastrous outcome.</p><p>Factors predicting outcome include:</p><ul>
  • +</ol><p>CTA, MRI, and catheter angiography can all be used to detect vertebral artery dissection, and each has pros and cons. Unfortunately, the vertebral arteries cannot always be satisfactorily imaged using ultrasound, and the diagnosis relies more on indirect Doppler hemodynamic signs than on direct identification of the dissection <sup>10</sup>.</p><h5>CT</h5><p>CT and CT angiography (CTA) are often the first investigations obtained. Other than demonstrating posterior fossa ischaemia or subarachnoid haemorrhage, CT may identify an occluded vertebral (hyperdense) or mural thrombus (thickened wall, often with some surrounding stranding). CT may sometimes show a characteristic "double lumen" appearance <sup>5</sup>.</p><p>CTA additionally can, especially with coronal and sagittal reformats, demonstrate irregularity of the lumen, as well as make thickening of the arterial wall more easily appreciable.</p><h5>MRI</h5><p>In addition to far greater sensitivity to small foci of ischaemia (using <a href="/articles/diffusion-weighted-imaging-2">DWI</a>), and the ability to image the vessel lumen (MRA), MRI is also more sensitive at imaging intramural haemorrhage.</p><p>Fat suppressed T1 axial images (without contrast) through the neck are standard for detecting cervical arterial intramural hematoma, demonstrating a <a href="/articles/crescent-sign-of-arterial-dissection">crescent sign</a> of hyperintensity in the wall of the affected vessel. Flow-suppressed T1-weighted <a href="/articles/mprage">MPRAGE</a> sequence has been suggested as a more reliable alternative <sup>12</sup>.</p><h5>Angiography (DSA)</h5><p>Conventional angiography is traditionally considered the gold standard. It may demonstrate focal dilatation, proximal or distal stenosis, or fusiform aneurysmal dilatation <sup>9</sup>.</p><h4>Treatment and prognosis</h4><p>Both treatment and prognosis are strongly affected by whether or not the dissection extends into the intracranial compartment. If the latter is true, then there is a high rate of subarachnoid haemorrhage, usually with a disastrous outcome.</p><p>Factors predicting outcome include:</p><ul>
  • -</ul><h4>Differential diagnosis</h4><p>It may be difficult to differentiate between a vertebral artery dissection and a <a href="/articles/vertebral-artery-hypoplasia">hypoplastic vertebral artery</a> in a trauma setting.</p>
  • +</ul><h4>Differential diagnosis</h4><p>Extensive, regular luminal narrowing can be due to developmental <a title="hypoplasia of the vertebral artery" href="/articles/vertebral-artery-hypoplasia">vertebral artery hypoplasia</a>.</p><p>T1 hyperintensity around the V3 segment on spin-echo-based images can be due to the perivascular venous plexus rather than intramural hematoma <sup>12</sup>.</p>

References changed:

  • 5. Soper J, Parker G, Hallinan J. Vertebral Artery Dissection Diagnosed with CT. AJNR Am J Neuroradiol. 1995;16(4 Suppl):952-4. <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8332251">PMC8332251</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/7611083">Pubmed</a>
  • 6. Pelkonen O, Tikkakoski T, Pyhtinen J, Sotaniemi K. Cerebral CT and MRI Findings in Cervicocephalic Artery Dissection. Acta Radiol. 2004;45(3):259-65. <a href="https://doi.org/10.1080/02841850410004184">doi:10.1080/02841850410004184</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/15239419">Pubmed</a>
  • 7. Lévy C, Laissy J, Raveau V et al. Carotid and Vertebral Artery Dissections: Three-Dimensional Time-Of-Flight MR Angiography and MR Imaging Versus Conventional Angiography. Radiology. 1994;190(1):97-103. <a href="https://doi.org/10.1148/radiology.190.1.8259436">doi:10.1148/radiology.190.1.8259436</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/8259436">Pubmed</a>
  • 8. Ahn J, Han I, Kim T et al. Endovascular Treatment of Intracranial Vertebral Artery Dissections with Stent Placement or Stent-Assisted Coiling. AJNR Am J Neuroradiol. 2006;27(7):1514-20. <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7977515">PMC7977515</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/16908571">Pubmed</a>
  • 9. Shin J, Suh D, Choi C, Leei H. Vertebral Artery Dissection: Spectrum of Imaging Findings with Emphasis on Angiography and Correlation with Clinical Presentation. Radiographics. 2000;20(6):1687-96. <a href="https://doi.org/10.1148/radiographics.20.6.g00nv081687">doi:10.1148/radiographics.20.6.g00nv081687</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/11112824">Pubmed</a>
  • 10. Park K, Park J, Hwang S, Im S, Shin W, Kim B. Vertebral Artery Dissection: Natural History, Clinical Features and Therapeutic Considerations. J Korean Neurosurg Soc. 2008;44(3):109-15. <a href="https://doi.org/10.3340/jkns.2008.44.3.109">doi:10.3340/jkns.2008.44.3.109</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/19096659">Pubmed</a>
  • 11. Rodallec M, Marteau V, Gerber S, Desmottes L, Zins M. Craniocervical Arterial Dissection: Spectrum of Imaging Findings and Differential Diagnosis. Radiographics. 2008;28(6):1711-28. <a href="https://doi.org/10.1148/rg.286085512">doi:10.1148/rg.286085512</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/18936031">Pubmed</a>
  • 12. McNally J, Hinckley P, Sakata A et al. Magnetic Resonance Imaging and Clinical Factors Associated With Ischemic Stroke in Patients Suspected of Cervical Artery Dissection. Stroke. 2018;49(10):2337-44. <a href="https://doi.org/10.1161/strokeaha.118.021868">doi:10.1161/strokeaha.118.021868</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/30355108">Pubmed</a>
  • 13. Nouh A, Remke J, Ruland S. Ischemic Posterior Circulation Stroke: A Review of Anatomy, Clinical Presentations, Diagnosis, and Current Management. Front Neurol. 2014;5:30. <a href="https://doi.org/10.3389/fneur.2014.00030">doi:10.3389/fneur.2014.00030</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/24778625">Pubmed</a>
  • 14. Church E, Sieg E, Zalatimo O, Hussain N, Glantz M, Harbaugh R. Systematic Review and Meta-Analysis of Chiropractic Care and Cervical Artery Dissection: No Evidence for Causation. Cureus. 2016;8(2):e498. <a href="https://doi.org/10.7759/cureus.498">doi:10.7759/cureus.498</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/27014532">Pubmed</a>
  • 15. Biller J, Sacco R, Albuquerque F et al. Cervical Arterial Dissections and Association With Cervical Manipulative Therapy. Stroke. 2014;45(10):3155-74. <a href="https://doi.org/10.1161/str.0000000000000016">doi:10.1161/str.0000000000000016</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/25104849">Pubmed</a>
  • 16. Smith W, Johnston S, Skalabrin E et al. Spinal Manipulative Therapy is an Independent Risk Factor for Vertebral Artery Dissection. Neurology. 2003;60(9):1424-8. <a href="https://doi.org/10.1212/01.wnl.0000063305.61050.e6">doi:10.1212/01.wnl.0000063305.61050.e6</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/12743225">Pubmed</a>
  • 17. Ernst E. Deaths After Chiropractic: A Review of Published Cases. Int J Clin Pract. 2010;64(8):1162-5. <a href="https://doi.org/10.1111/j.1742-1241.2010.02352.x">doi:10.1111/j.1742-1241.2010.02352.x</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/20642715">Pubmed</a>
  • 12. P. Michael Conn "Neuroscience in medicine" Published by Humana Press <a href="https://books.google.com.au/books?id=sor_roKluskC">Read it at Google books</a>
  • 13. R. W. Baumgartner, J. Bogousslavsky, V "Handbook on Cerebral Artery Dissection" Published by Karger Publishers
  • 5. Soper JR, Parker GD, Hallinan JM. Vertebral artery dissection diagnosed with CT. AJNR Am J Neuroradiol. 1995;16 (4): 952-4. <a href="http://www.ajnr.org/cgi/content/abstract/16/4/952">AJNR Am J Neuroradiol (abstract)</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/7611083">Pubmed citation</a><div class="ref_v2"></div>
  • 6. Pelkonen O, Tikkakoski T, Pyhtinen J et-al. Cerebral CT and MRI findings in cervicocephalic artery dissection. Acta Radiol. 2004;45 (3): 259-65. <a href="http://ar.rsmjournals.com/cgi/pmidlookup?view=long&pmid=15239419">Acta Radiol (link)</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/15239419">Pubmed citation</a><div class="ref_v2"></div>
  • 7. Lévy C, Laissy JP, Raveau V et-al. Carotid and vertebral artery dissections: three-dimensional time-of-flight MR angiography and MR imaging versus conventional angiography. Radiology. 1994;190 (1): 97-103. <a href="http://radiology.rsna.org/content/190/1/97.abstract">Radiology (abstract)</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/8259436">Pubmed citation</a><div class="ref_v2"></div>
  • 8. Ahn JY, Han IB, Kim TG et-al. Endovascular treatment of intracranial vertebral artery dissections with stent placement or stent-assisted coiling. AJNR Am J Neuroradiol. 2006;27 (7): 1514-20. <a href="http://www.ajnr.org/cgi/content/full/27/7/1514">AJNR Am J Neuroradiol (full text)</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/16908571">Pubmed citation</a><div class="ref_v2"></div>
  • 9. Shin JH, Suh DC, Choi CG et-al. Vertebral artery dissection: spectrum of imaging findings with emphasis on angiography and correlation with clinical presentation. Radiographics. 20 (6): 1687-96. <a href="http://radiographics.rsna.org/content/20/6/1687.full">Radiographics (full text)</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/11112824">Pubmed citation</a><div class="ref_v2"></div>
  • 10. Park KW, Park JS, Hwang SC et-al. Vertebral artery dissection: natural history, clinical features and therapeutic considerations. J Korean Neurosurg Soc. 2008;44 (3): 109-15. <a href="http://dx.doi.org/10.3340/jkns.2008.44.3.109">doi:10.3340/jkns.2008.44.3.109</a> - <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2588305">Free text at pubmed</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/19096659">Pubmed citation</a><span class="auto"></span>
  • 11. Rodallec MH, Marteau V, Gerber S et-al. Craniocervical arterial dissection: spectrum of imaging findings and differential diagnosis. Radiographics. 2008;28 (6): 1711-28. <a href="http://dx.doi.org/10.1148/rg.286085512">doi:10.1148/rg.286085512</a> - <a href="http://www.ncbi.nlm.nih.gov/pubmed/18936031">Pubmed citation</a><span class="auto"></span>
  • 14. FT Merei, F Gallyas and Z Horvath "Elastic Elements in the Media and Adventitia. of Human Intracranial Extracerebral Arteries" Stroke 1980;11;329-336
  • 15. Nouh A, Remke J, Ruland S. Ischemic posterior circulation stroke: a review of anatomy, clinical presentations, diagnosis, and current management. Frontiers in neurology. 5: 30. <a href="https://doi.org/10.3389/fneur.2014.00030">doi:10.3389/fneur.2014.00030</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/24778625">Pubmed</a> <span class="ref_v4"></span>
  • 16. Church EW, Sieg EP, Zalatimo O, Hussain NS, Glantz M, Harbaugh RE. Systematic Review and Meta-analysis of Chiropractic Care and Cervical Artery Dissection: No Evidence for Causation. Cureus. 8 (2): e498. <a href="https://doi.org/10.7759/cureus.498">doi:10.7759/cureus.498</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/27014532">Pubmed</a> <span class="ref_v4"></span>
  • 17. Cervical Arterial Dissections and Association With Cervical Manipulative Therapy. Stroke. 45 (10): 3155. <a href="https://doi.org/10.1161/STR.0000000000000016">doi:10.1161/STR.0000000000000016</a> <span class="ref_v4"></span>
  • 18. Smith WS, Johnston SC, Skalabrin EJ, Weaver M, Azari P, Albers GW, Gress DR. Spinal manipulative therapy is an independent risk factor for vertebral artery dissection. Neurology. 60 (9): 1424-8. <a href="https://www.ncbi.nlm.nih.gov/pubmed/12743225">Pubmed</a> <span class="ref_v4"></span>
  • 19. Ernst E. Deaths after chiropractic: a review of published cases. International journal of clinical practice. 64 (8): 1162-5. <a href="https://doi.org/10.1111/j.1742-1241.2010.02352.x">doi:10.1111/j.1742-1241.2010.02352.x</a> - <a href="https://www.ncbi.nlm.nih.gov/pubmed/20642715">Pubmed</a> <span class="ref_v4"></span>

ADVERTISEMENT: Supporters see fewer/no ads

Updating… Please wait.

 Unable to process the form. Check for errors and try again.

 Thank you for updating your details.